
Catalog

Profs. Martin Odersky and Viktor Kuncak
CS-210 Functional Programming
09.11.2022 from 13h15 to 14h45
Duration : 90 minutes

1
SCIPER : 1000001 ROOM : CO1

Ada Lovelace
Wait for the start of the exam before turning to the next page. This document is printed
double sided, 16 pages. Do not unstaple.

Material This is a closed book exam. Paper documents and electronic devices are not
allowed. Place on your desk your student ID and writing utensils. Place all
other personal items below your desk or on the side. If you need additional
draft paper, raise your hand and we will provide some.

Time All points are not equal: we do not think that all exercises have the same
difficulty, even if they have the same number of points.

Appendix The last page of this exam contains an appendix which is useful for formulating
your solutions. Do not detach this sheet.

Use a pen For technical reasons, only use black or blue pens for the MCQ part,
no pencils! Use white corrector if necessary.

Stay Functional You are strictly forbidden to use return statements, mutable state (vars)
and mutable collections in your solutions.



Catalog

First part: single choice questions

Each question has exactly one correct answer. Marking only the box corresponding to the correct answer
will get you 4 points. Otherwise, you will get 0 points for the question.

Given the following function sums:

1 def add(c: Int, acc: List[(Int, Int)]): List[(Int, Int)] = acc match
2 case Nil => List((c, 1))

3 case x :: xs => if x._1 == c then (c, x._2+1) :: xs else x :: add(c, xs)

4
5 def sums(digits: List[Int]): List[(Int, Int)] =

6 digits.foldRight(List[(Int, Int)]())(add)

Your task is to identify several operations on lists of digits:

Question [SCQ-01] What does the following operation implement, for a given input list of digits?

1 def mystery1(digits: List[Int]): List[Int] =

2 sums(digits).filter(_._2 == 1).map(_._1)

Returns a list of elements that appear exactly once in the input list, in a reverse order

Returns a list of elements that appear exactly once in the input list, preserving the original order of
appearance

Returns a list consisting of elements of the input list that are equal to 1

Returns the first element of the input list

Returns List(1) if the input list contains at least one digit 1, an empty list otherwise

Question [SCQ-02] What does the following operation implement, for a given input list of digits?

1 def mystery2(digits: List[Int]): List[Int] =

2 mystery1(digits).filter(_ == 1)

Returns List(1) if the input list contains exactly one digit 1, an empty list otherwise

Returns List(1) if the input list contains at least one digit 1, an empty list otherwise

Returns a list of elements that appear exactly once in the input list, preserving the original order of
appearance

Returns a list of elements that appear exactly once in the input list, in a reverse order

Returns a list consisting of elements of the input list that are equal to 1



Catalog

Question [SCQ-03] What does the following operation implement, for a given input list of digits?

1 def mystery3(digits: List[Int]): Int = sums(digits) match
2 case Nil => 0

3 case t => t.reduceLeft((a, b) => (a._1 * a._2 + b._1 * b._2, 1))._1

Returns the sum of all elements in the input list

Returns the sum of elements that appear exactly once in the input list

Returns the sum of elements in the input list, counting duplicated elements only once

Returns the product of all elements in the input list

Returns the number of elements in the input list

Question [SCQ-04] What does the following operation implement, for a given input list of digits?

1 def mystery4(digits: List[Int]): Int = sums(digits) match
2 case Nil => 0

3 case t => t.reduceLeft((a, b) => (a._1, a._2 + b._2))._2

Returns the number of elements in the input list

Returns the number of elements in the input list, counting duplicated elements only once

Returns the number of elements that appear exactly once in the input list

Returns the sum of all elements in the input list

Returns the first element of the input list



Catalog

The goal of the 4 following questions is to prove that the methods map and mapTr are equivalent. The
former is the version seen in class and is specified by the lemmas MapNil and MapCons. The later version
is a tail-recursive version and is specified by the lemmas MapTrNil and MapTrCons.

All lemmas on this page hold for all x: Int, y: Int, xs: List[Int], ys: List[Int], l: List

[Int] and f: Int => Int.

Given the following lemmas:

(MapNil) Nil.map(f) === Nil

(MapCons) (x :: xs).map(f) === f(x) :: xs.map(f)

(MapTrNil) Nil.mapTr(f, ys) === ys

(MapTrCons) (x :: xs).mapTr(f, ys) === xs.mapTr(f, ys ++ (f(x) :: Nil))

(NilAppend) Nil ++ xs === xs

(ConsAppend) (x :: xs) ++ ys === x :: (xs ++ ys)

Let us first prove the following lemma:

(AccOut) l.mapTr(f, y :: ys) === y :: l.mapTr(f, ys)

We prove it by induction on l.

Question [SCQ-05] Base case: l is Nil. Therefore, we need to prove:

Nil.mapTr(f, y :: ys) === y :: Nil.mapTr(f, ys).

What exact sequence of lemmas should we apply to rewrite the left hand-side (Nil.mapTr(f, y :: ys))
to the right hand-side (y :: Nil.mapTr(f, ys))?

NilAppend, NilAppend, MapTrNil

NilAppend, NilAppend, NilAppend

MapTrNil, MapTrNil

NilAppend, MapTrNil, NilAppend

MapTrNil, NilAppend

NilAppend, MapTrNil

Question [SCQ-06] Induction step: l is x :: xs. Therefore, we need to prove:

(x :: xs).mapTr(f, y :: ys) === y :: (x :: xs).mapTr(f, ys)

We name the induction hypothesis IH.

What exact sequence of lemmas should we apply to rewrite the left hand-side ((x :: xs).mapTr(f, y

:: ys)) to the right hand-side (y :: (x :: xs).mapTr(f, ys))?

MapTrCons, ConsAppend, IH, MapTrCons

NilAppend, ConsAppend, IH, MapTrCons

NilAppend, IH, MapTrCons

ConsAppend, MapTrCons, IH

ConsAppend, IH, MapTrCons

MapTrCons, IH, ConsAppend, MapTrCons

IH, ConsAppend, IH, ConsAppend

MapTrCons, NilAppend, IH, MapTrCons

NilAppend, ConsAppend, IH, ConsAppend



Catalog

Given all lemmas on the previous page, including AccOut, let us now prove our goal:

(MapEqMapTr) l.map(f) === l.mapTr(f, Nil)

We prove it by induction on l.

Question [SCQ-07] Base case: l is Nil. Therefore, we need to prove:

Nil.map(f) === Nil.mapTr(f, Nil)

What exact sequence of lemmas should we apply to rewrite the left hand-side (Nil.map(f)) to the right
hand-side (Nil.mapTr(f, Nil))?

MapTrNil, MapTrNil

MapTrNil, NilAppend

NilAppend, MapTrNil

MapNil, MapNil

MapNil, NilAppend

NilAppend, MapNil

MapTrNil, MapNil

MapNil, MapTrNil

Question [SCQ-08] Induction step: l is x :: xs. Therefore, we need to prove:

(x :: xs).map(f) === (x :: xs).mapTr(f, Nil)

We name the inductions hypothesis IH.

What exact sequence of lemmas should we apply to rewrite the left hand-side ((x :: xs).map(f)) to the
right hand-side ((x :: xs).mapTr(f, Nil))?

MapCons, NilAppend, IH, AccOut, MapTrCons

MapCons, IH, NilAppend, AccOut, MapTrCons

MapCons, NilAppend, IH, AccOut, MapTrCons

MapCons, AccOut, IH, NilAppend, MapTrCons

MapCons, IH, AccOut, NilAppend, MapTrCons

MapCons, NilAppend, AccOut, IH, MapTrCons

MapCons, IH, NilAppend, MapTrCons, AccOut

MapCons, NilAppend, AccOut, MapTrCons, IH

MapCons, IH, IH, NilAppend, MapTrCons

MapCons, NilAppend, AccOut, AccOut, MapTrCons

MapCons, IH, NilAppend, MapTrCons, IH

MapCons, NilAppend, AccOut, MapTrCons, AccOut

MapTrCons, IH, NilAppend, AccOut, MapCons

MapTrCons, IH, AccOut, NilAppend, MapCons

MapTrCons, AccOut, NilAppend, IH, MapCons

MapTrCons, NilAppend, IH, IH, MapCons

Note: question 8 is graded independently from questions 5 and 6; you can use the AccOut lemma as
an axiom even if you did not prove it.



Catalog

Given the following classes:

• class Pair[+U, +V]

• class Iterable[+U]

• class Map[U, +V] extends Iterable[Pair[U, V]]

Recall that + means covariance, - means contravariance and no annotation means invariance (i.e. neither
covariance nor contravariance).

Consider also the following typing relationships for A, B, X, and Y:

• A >: B

• X >: Y

Fill in the subtyping relation between the types below using symbols:

• <: in case T1 is a subtype of T2;

• >: in case T1 is a supertype of T2;

• “Neither” in case T1 is neither a supertype nor a supertype of T2.

Question [SCQ-09] What is the correct subtyping relationship between A => (Y => X) and A => (X

=> Y)?

<:

>:

Neither

Question [SCQ-10] What is the correct subtyping relationship between Map[A, X] and Map[B, Y]?

<:

>:

Neither

Question [SCQ-11] What is the correct subtyping relationship between Iterable[Pair[A, Y]] => Y

and Map[A, Y] => X?

<:

>:

Neither



Catalog

Question [SCQ-12] What does the following operation output for a given input list of numbers ?

1 def mystery5(ys: List[Int]) =

2 for y <- ys if y >= 0 && y <= 255 yield
3 val bits =

4 for z <- 7 to 0 by -1 yield
5 if ((1 << z) & y) != 0 then "1" else "0"

6 bits.foldRight("")((z, acc) => z + acc)

We have as an output...

... a list of strings, each string corresponding to the 8-bit representation of an element if and only
if that element is between 0 and 255 included. The most significant bit is farthest to the left in the
characters sequence.

... a list of strings, each string corresponding to the 8-bit representation of an element if and only if
that element is between 0 and 255 included. The most significant bit is farthest to the right in the
characters sequence.

... a list of lists of elements ∈ {”0”, ”1”}, each list corresponding to the 8-bit representation of an
element of the input list if and only if that element is between 0 and 255 included. The most significant
bit is farthest to the right in the string sequence.

... a list of lists of elements ∈ {”0”, ”1”}, each list corresponding to the 8-bit representation of an
element of the input list if and only if that element is between 0 and 255 included. The most significant
bit is farthest to the left in the string sequence.

Hint: The most significant bit represents the largest value in a multiple-bit binary number.

Question [SCQ-13] Given the following method:

1 def mystery6(nIter: Int) (ss: List[String] ): List[String] =

2 if nIter <= 0 then ss

3 else mystery6 (nIter - 1) (

4 for
5 s <- ss

6 c <- List (’c’ , ’b’ , ’a’)

7 yield
8 s + c

9 ) ::: ss

What is the output if we call mystery6 this way:
mystery6(5)(List("")).filter(_.exists(_ == ’b’))(0)

"ccccb"

"bcccc"

"acccb"

"b"

"abc"

"ab"

"bccca"



Catalog

Second part, open questions

Question 14 This question is worth 13 points.

A reflected binary code or simply Gray code is an n-bit binary encoding Cn. It has the property that
successive codewords only differ by a single bit, i.e., D(Cn(i), Cn(i + 1)) = 1, where D(x, y) denotes the
Hamming distance between x and y for i ∈ Z2n . Gray codes for a few small n are given in the codebox
below.

In this exercise, we wish to construct Gray codes of arbitrary sizes in a succinct and recursive manner.
This means that your program must not exceed 10 lines of code and must not contain any helper functions.
Note that the order of elements in the obtained lists is of crucial importance and needs to exactly correspond
to the given examples. A tail-recursive solution is not required.

Here are some examples of successful runs:

1 gray(0)

2 // : List[String] = List("")

3
4 gray(1)

5 // : List[String] = List("0", "1")

6
7 gray(2)

8 // : List[String] = List("00", "01", "11", "10")

9
10 gray(3)

11 // : List[String]

12 // = List(

13 // "000", "001", "011", "010",

14 // "110", "111", "101", "100"

15 // )

Hint 1: Proceed in an inductive manner, in other words, assuming that Cn−1 is a valid Gray code what
transformation F (Cn−1) = Cn yields a correct encoding for n?
Hint 2: Use the + operator to build strings.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Do not write here.

// Returns the gray code of size n.

def gray(n: Int): List[String] =

require(n >= 0)



Catalog



Catalog

Question 15 This question is worth 35 points. It contains 5 sub-questions of 7 points each.

In this exercise, you will implement the k-nearest neighbors algorithm (k-NN), in which you will use a
training dataset in order to classify new test points. The algorithm works by first finding the k nearest
training points for a given test point, and then assigning the label of the majority class of those k points to
that test point.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0.0

0.5

1.0

1.5

2.0

2.5

y

A
B
C
?

Figure 1: k-NN example: To classify the given test
point ⋆, we simply assign it the majority label of the
k nearest training points. For example, the k = 3

nearest neighbors have class labels A,B,B, so we la-
bel the new point as B.

We give you the following definitions of a 2D point, with or without a label, and a function to compute the
distance of a test point to a list of training points.

1 import scala.math.sqrt

2
3 // A point in 2D space

4 case class Point(x: Double, y: Double):

5 // Euclidean distance to another point

6 def distance(p: Point): Double =

7 val dx = x - p.x

8 val dy = y - p.y

9 sqrt(dx * dx + dy * dy)

10
11 // A 2D point with a label

12 case class LabeledPoint(point: Point, label: String)

13
14 // Computes the distance of a point p to each point in the list pts.

15 def distances(pts: List[LabeledPoint], p: Point): List[(LabeledPoint, Double)] =

16 pts.map(q => (q, p.distance(q.point)))

Here is the interface of the functions you should implement:

1 // Retrieves the k nearest training points for a given point p.

2 def kNearest(pts: List[LabeledPoint], p: Point, k: Int): List[LabeledPoint]

3
4 // Given a list of labeled points, counts the number of times each label appears.

5 def countLabels(pts: List[LabeledPoint]): Map[String, Int]

6
7 // Given the label count, returns the label with the highest count. If multiple

8 // labels have the same maximum count, returning either of them is fine.

9 def maxLabel(labelCount: Map[String, Int]): String

10
11 // Given a list of labeled points, returns the majority label.

12 def majorityLabel(pts: List[LabeledPoint]): String

13
14 // k-NN function that labels a list of test points using the k nearest neighbors

15 // in the training set.

16 def knn(train: List[LabeledPoint], test: List[Point], k: Int): List[LabeledPoint]



Catalog

Here is an example of a successful run:

1 // A set of labeled training points

2 val train = List(

3 LabeledPoint(Point(1.0, 1.0), "A"), LabeledPoint(Point(2.0, 0.5), "A"),

4 LabeledPoint(Point(1.0, 2.0), "B"), LabeledPoint(Point(1.5, 2.0), "B"),

5 LabeledPoint(Point(3.0, 1.0), "C"), LabeledPoint(Point(2.5, 1.5), "C"),

6 )

7 // A set of test points to classify

8 val test = List(Point(1.5, 1.5), Point(1.5, 1.0))

9
10 knn(train, test, 3)

11 // : List[LabeledPoint]

12 // = List(

13 // LabeledPoint(Point(1.5, 1.5), "B"),

14 // LabeledPoint(Point(1.5, 1.0), "A")

15 // )

Implement all the functions indicated in the interface above. It is possible to solve all of them using a single
line of code each.
Hint: Remember that some of the functions we ask you to implement can be helpful in implementing others.
It’s okay to use these functions even if you did not solve them first.

0 1 2 3 4 5 6 7 Do not write here.

// Retrieves the k nearest training points for a given point p.

def kNearest(pts: List[LabeledPoint], p: Point, k: Int): List[LabeledPoint] =

0 1 2 3 4 5 6 7 Do not write here.

// Given a list of labeled points, counts the number of times each label appears.

def countLabels(pts: List[LabeledPoint]): Map[String, Int] =



Catalog

0 1 2 3 4 5 6 7 Do not write here.

// Given the label count, returns the label with the highest count. If multiple

// labels have the same maximum count, returning either of them is fine.

def maxLabel(labelCount: Map[String, Int]): String =

0 1 2 3 4 5 6 7 Do not write here.

// Given a list of labeled points, returns the majority label.

def majorityLabel(pts: List[LabeledPoint]): String =

0 1 2 3 4 5 6 7 Do not write here.

// k-NN function that labels a list of test points using the k nearest neighbors

// in the training set.

def knn(train: List[LabeledPoint], test: List[Point], k: Int): List[LabeledPoint] =



Catalog



Catalog



Catalog



Catalog

Appendix: Scala Standard Library Methods

Here are the prototypes of some Scala classes that you might find useful:

abstract class List[+A]:

// Adds an element at the beginning of this list.

def ::[B >: A](elem: B): List[B]

// A copy of this sequence with an element appended.

def appended[B >: A](elem: B): List[B]

// Get the element at the specified index.

def apply(n: Int): A

// Selects all elements except first n ones.

def drop(n: Int): Iterable[A]

// Selects all elements of this list which satisfy a predicate.

def filter(pred: (A) => Boolean): List[A]

// Applies a binary operator to a start value and all elements of this sequence,

going left to right.

def foldLeft[B](z: B)(op: (B, A) => B): B

// Applies a binary operator to a start value and all elements of this sequence,

going right to left.

def foldRight[B](z: B)(op: (A, B) => B): B

// Partitions the list into a map of lists according to some discriminator function.

def groupBy[K](f: (A) => K): Map[K, List[A]]

// Selects the first element of this list.

def head: A

// Selects the last element.

def last: A

// Applies the function f to each element in the list.

def map[B](f: (A) => B): List[B]

// The size of this collection.

def size: Int

// Sorts this sequence according to the Ordering which results from transforming an

implicitly given Ordering with a transformation function.

def sortBy[B](f: (A) => B): List[A]

// Sorts this sequence according to a comparison function.

def sortWith(lt: (A, A) => Boolean): List[A]

// Selects all elements except the first.

def tail: List[A]

// Selects the first n elements.

def take(n: Int): Iterable[A]

abstract class Map[K, +V]:

// Optionally returns the value associated with a key.

def get(key: K): Option[V]

// Builds a new map by applying a function to all elements of this map.

def map[K2, V2](f: ((K, V)) => (K2, V2)): Map[K2, V2]

// Finds the first element which yields the largest value measured by function f.

def maxBy[B](f: ((K, V)) => B): (K, V)

// Returns this map as a List[(K, V)].

def toList: List[(K, V)]

abstract final class Int:

// Returns this value bit-shifted left by the specified number of bits, filling in

// the new right bits with zeroes.

def <<(x: Int): Long

abstract final class Long:

// Returns the bitwise AND of this value and x.

def &(x: Int): Long

abstract final class String:

// Tests whether a predicate holds for at least one element of this sequence.

def exists(p: Char => Boolean): Boolean


