
Solutions

Profs. Viktor Kunčak, Martin Odersky, and
Clément Pit-Claudel
CS-214 Software Construction make-up midterm
01.11.2023 from 16:15 to 17:45
Duration: 90 minutes

1
SCIPER : 1000001 ROOM : SG 1

Annie Easley
Wait for the start of the exam before turning to the next page. This document is printed
double sided, 16 pages. Do not unstaple.

Material This is a closed book exam. Paper documents and electronic devices are
not allowed. Place on your desk your student ID and writing utensils.
Place all other personal items at the front of the room. If you need
additional draft paper, raise your hand and we will provide some.

Time All points are not equal: we do not think that all exercises have the
same difficulty, even if they have the same number of points. Manage
your time accordingly. You may want to look at the whole exam before
starting on a particular exercise.

Appendix The last page of this exam contains an appendix which is useful for
formulating your solutions. Do not detach this sheet.

Use a pen For technical reasons, only use black or blue pens for the MCQ
part, no pencils! Use white corrector if necessary.

Grading Scheme The exam contains a total of 100 points. For multiple choice questions,
a good answer is worth 4 points and a bad answer 0 points. Note that
there is always exactly one good answer to each question. For true-false
questions, a good answer is worth 2 points and a bad answer 0 points.
For open questions, the number of points is variable and indicated at
the top of each question.

Stay Functional Do not use vars, while loops, for...do loops, etc. This will result
in 0 points for that question.

Solutions

Run-length encoding (11 pts)
Question 1 This question is worth 11 points.

0 1 2 3 4 5 6 7 8 9 10 11 Do not write here.

Run-length encoding is a simple compression technique that replaces contiguous sequences of equal elements
in a list by a pair containing the element and a number indicating how many times it was repeated.

Write a function runLengthEncode[T](xs: List[T]): List[(T, Int)] that takes a list of ele-
ments and returns a run-length-encoded version of the input.

Here are example tests that your implementation must pass:

test("runLengthEncode: empty list"):

assertEquals(runLengthEncode(Nil), Nil)

test("runLengthEncode: list without repeated elements"):

assertEquals(runLengthEncode(List("a", "b")), List(("a", 1), ("b", 1)))

test("runLengthEncode: list with repeated elements"):

assertEquals(

runLengthEncode(List("x", "a", "a", "x")),

List(("x", 1), ("a", 2), ("x", 1))

)

The runtime complexity of your implementation should not be more than linear (O(n)).

def runLengthEncode[T](xs: List[T]): List[(T, Int)] =

xs match
case Nil ⇒ Nil

case h :: t ⇒
runLengthEncode(t) match

case (‘h‘, n) :: rlt ⇒ (h, n + 1) :: rlt

case rlt ⇒ (h, 1) :: rlt

Solutions

Mystery function (10 pts)
Question 2 This question is worth 10 points.

0 1 2 3 4 5 6 7 8 9 10 Do not write here.

In this exercise, your task is to use the substitution method to write the step-by-step evaluation of an
expression, under the call-by-value evaluation strategy.

You must apply the definition of a single function call at a time and write the result of each step. You can
directly reduce if-then-else expressions to their branches.

As an example, consider the function factorial:

def factorial(n: Int): Int =

if n == 0 then 1

else n * factorial(n - 1)

The expression factorial(2) evaluates step-by-step as follows:

factorial(2)

=== 2 * factorial(1)

=== 2 * (1 * factorial(0))

=== 2 * (1 * 1)

=== 2 * 1

=== 2

Now, consider the function f:

def f(x: Int, y: Int, z: Int = 0): Int =

if x < y && z == 0 then 0

else if z == 0 then 1 + f(x - y, y, y) - y

else 1 + f(x, y, z - 1)

Write the step-by-step evaluation of the expression f(3, 3):

f(3, 3, 0)

=== (1 + f(0, 3, 3) - 3)

=== (1 + (1 + f(0, 3, 2)) - 3)

=== (1 + (1 + (1 + f(0, 3, 1))) - 3)

=== (1 + (1 + (1 + (1 + f(0, 3, 0)))) - 3)

=== (1 + (1 + (1 + (1 + (0)))) - 3)

=== 1

What does f(x, y) compute when x and y are positive, in a few words?

The integer division x / y

Solutions

Permutations (14 pts)
A sequence xs: Seq[Int] defines a function f : i 7→ xs(i). If this function is a bijection from
[0,xs.length) into [0,xs.length), we call the sequence a permutation.

As a reminder, a function f : A → B is a bijection if each element of A and B is paired with exactly one
element of the other set.

For example, Seq(0, 3, 1, 2) is a permutation, and so is Seq(0, 1, 2, 3).

Given below are 7 different implementations of the isPermutation function. A correct implementation
must return true if the given sequence is a permutation, or false otherwise. For each implementation, tick
“Yes” if it is correct (for all possible inputs), or “No” if it is incorrect.

def isPermutation1(xs: Vector[Int]): Boolean =

(0 until xs.length).forall(xs.contains)

Question 3 Is isPermutation1 correct?
Yes No

def isPermutation2(xs: Vector[Int]): Boolean =

def loop(xs: Vector[Int], ys: Set[Int]): Boolean =

if xs.isEmpty then true
else
ys.contains(xs.head) &&

loop(xs.tail, ys - xs.head)

loop(xs, xs.toSet)

Question 4 Is isPermutation2 correct?
Yes No

def isPermutation3(xs: Vector[Int]): Boolean =

xs.toSet.size == xs.size

Question 5 Is isPermutation3 correct?
Yes No

def isPermutation4(xs: Vector[Int]): Boolean =

xs.forall(x ⇒ xs.count(_ == x) == 1)

Question 6 Is isPermutation4 correct?
Yes No

Solutions

def isPermutation5(xs: Vector[Int]): Boolean =

def loop(ys: Vector[Int]): Boolean =

if ys.isEmpty then true
else
0 ≤ ys.head &&

ys.head < xs.length &&

xs.count(_ == ys.head) == 1

loop(xs)

Question 7 Is isPermutation5 correct?
Yes No

def isPermutation6(xs: Vector[Int]): Boolean =

def loop(xs: Vector[Int], ys: Set[Int]): Set[Int] =

if xs.isEmpty then ys

else loop(xs.tail, ys + xs.head)

loop(xs, Set()) == (0 until xs.length).toSet

Question 8 Is isPermutation6 correct?
Yes No

def isPermutation7(xs: Vector[Int]): Boolean =

xs.reverse == xs

Question 9 Is isPermutation7 correct?
Yes No

Solutions

Proof of ContainsConcat (12 pts)
Question 10 This question, consisting of both cases of the proof, is worth 12 points.

0 1 2 3 4 5 6 7 8 9 10 11 12 Do not write here.

All lemmas on this page hold for all types T and all x: T, y: T, b1: Boolean, b2: Boolean, b3: Boolean,
xs: List[T], ys: List[T], l: List[T], m: List[T].

Given the following lemmas:

(ConcatNilL) Nil ++ xs === xs

(ConcatNilR) xs ++ Nil === xs

(ConcatCons) (x::xs) ++ ys === x::(xs ++ ys)

(ContainsNil) Nil.contains(x) === false

(ContainsCons) (x :: xs).contains(y) === x == y | xs.contains(y)

(OrAssoc) b1 | (b2 | b3) === (b1 | b2) | b3

(OrComm) b1 | b2 === b2 | b1

(OrFalseL) b === false | b

(OrFalseR) b === b | false

You need to prove:

(ContainsConcat) (l ++ m).contains(y) === l.contains(y) | m.contains(y)

Complete the proof below. For each step, you must write the name of the lemma you are using. You may
only use the lemmas above.

The proof is done by induction on l.

Base case: l is Nil. Therefore, you need to prove:

(Nil ++ m).contains(y) === Nil.contains(y) | m.contains(y)

(Nil ++ m).contains(y)

=== m.contains(y) // by ConcatNilL

=== False | m.contains(y) // by OrFalseR

=== Nil.contains(y) | m.contains(y) // by ContainsNil

Solutions

Induction step: l is x :: xs. Therefore, you need to prove:

((x::xs) ++ m).contains(y) === (x::xs).contains(y) | m.contains(y)

given that the induction hypothesis, named IH, holds:

(IH) (xs ++ m).contains(y) === xs.contains(y) | m.contains(y)

((x :: xs) ++ m).contains(y)

=== (x :: xs ++ m).contains(y) // by ConcatCons

=== (y == x) | (xs ++ m).contains(y) // by ContainsCons

=== (y == x) | (xs.contains(y) | m.contains(y)) // by IH

=== ((y == x) | xs.contains(y)) | m.contains(y) // by OrAssoc

=== (x :: xs).contains(y) | m.contains(y) // by ContainsCons

Solutions

for Comprehension (8 pts)
Question 11 This question is worth 8 points.

0 1 2 3 4 5 6 7 8 Do not write here.

The abundancy of a number is the ratio of the sum of its divisors to itself. For example, the abundancy of
30 is a(30) = 1+2+3+5+6+10+15+30

30 = 72
30 = 12

5

A friendly pair consists of two positive integers (a, b) with the same abundancy. For example, (30, 140) is a
friendly pair because a(30) = a(140).

Implement a function friendly(n: Int) takes an integer n < 104 as a parameter and produces a list
of all friendly pairs (a, b) such that 0 < a < b ≤ n, in at most O(n3) time.

The list should have no duplicates.

You must use a for comprehension in order to get any points for this question.

def friendly(n: Int): List[(Int, Int)] =

def sigma(k: Int) =

(1 to k).filter(k % _ == 0).sum

(for
i ← 1 to n

j ← i + 1 to n

if sigma(i) * j == sigma(j) * i

yield (i, j)).toList

Solutions

Subtyping (14 pts)
Recall that for any two types T1 and T2, T1 <: T2 means T1 is a subtype of T2.

Recall that + means covariance, - means contravariance and no annotation means invariance (i.e., neither
covariance nor contravariance).

Consider the following type definitions:
trait Bldg[-A]:

def fill(a: A): Unit

trait Food

trait Rest[P] extends Bldg[P]

For each of the following code fragments, indicate whether the definition respects variance and subtyping
rules: Yes if the code is correct, and No if variance or subtyping errors would cause it to be rejected by the
compiler.

Question 12 Is the following code valid?

trait Fact[+P, -E, +W] extends Bldg[W]

Yes No

Question 13 Is the following code valid?

trait Fact[+P, -E, W] extends Bldg[W]

Yes No

Question 14 Is the following code valid?

trait Fact[+P, -E, -W] extends Bldg[Bldg[W ⇒ E] ⇒ P]

Yes No

Question 15 Is the following code valid?

def f[T, U <: T](b: Bldg[Int ⇒ Bldg[T]], r: Rest[U]): Unit =

b.fill(i ⇒ r)

Yes No

Consider also the following classes:
class Vector[+T]

class Function[-T, +Q]

class Set[T]

Question 16 Is it the case that
Set[Set[Int]] <: Set[Int] ?

Yes No

Question 17 Is it the case that
Function[Bldg[Any], Rest[Int]] <: Function[Rest[Int], Rest[Any]] ?

Yes No

Question 18 Is it the case that
Vector[Bldg[Int] ⇒ Bldg[Any]] <: Vector[Rest[Any] ⇒ Bldg[Set[Int]]] ?

Yes No

Solutions

Parallelism (16 pts)
In this exercise, we will take a look at parallel collections and operations over them. Your task is to reason
about the correctness and safety of parallelized operations.

A useful analogue to foldLeft is scanLeft, which produces a list of intermediate values of the accumu-
lator. Here is a REPL session that exemplifies its behavior:

scala> List.empty[Int].scanLeft(0)((x, y) ⇒ x + y)

val res0: List[Int] = List(0)

scala> List(1, 2, 3).scanLeft(0)(_ + _)

val res1: List[Int] = List(0, 1, 3, 6)

scala> List(1, 2, 3).scanLeft(5)(_ + _)

val res2: List[Int] = List(5, 6, 8, 11)

scala> List(1, 2, 3).scanLeft(5)(_ - _)

val res3: List[Int] = List(5, 4, 2, -1)

Similarly, scanRight generalizes foldRight by tracking intermediate results:

scala> List.empty[Int].scanRight(0)((x, y) ⇒ x + y)

val res0: List[Int] = List(0)

scala> List(1, 2, 3).scanRight(0)(_ + _)

val res1: List[Int] = List(6, 5, 3, 0)

scala> List(1, 2, 3).scanRight(5)(_ + _)

val res2: List[Int] = List(11, 10, 8, 5)

scala> List(1, 2, 3).scanRight(5)(_ - _)

val res3: List[Int] = List(-3, 4, -2, 5)

Signature information and some documentation for scanLeft and scanRight for a list of type List[A]
are given below:

extension [A](l: List[A])

/* Produces a collection containing cumulative results of

applying the operator going left to right, including the

initial value. */

def scanLeft[B](z: B)(op: (B, A) ⇒ B): List[B]

/* Produces a collection containing cumulative results of applying

the operator going right to left. */

def scanRight[B](z: B)(op: (A, B) ⇒ B): List[B]

Equational reasoning
It is often possible to express a function in terms of other functions. For example, for all l: List[T]

and f: T => List[T], l.flatMap(f) === l.map(f).flatten.

Hence, we may naturally ask: is scanRight really necessary, or can all calls of the form l.scanRight(z)(op)

be rewritten to calls to scanLeft with appropriate modifications to the input list l, the base value z, and the
accumulation function op? Answer this question by writing down an equality relation between scanRight

and scanLeft valid for all base values z: B, all lists l: List[A] and all accumulation functions op:
(A, B) => B, or write NONE if no such relation exists:

l.scanLeft(z)(op) == l.reverse.scanRight(z)((a, b) ⇒ op(b, a)).reverse

Solutions

Parallelism
scanLeft specifies in which order in which the function op is applied. Yet, as for foldLeft, its output is
actually independent of parenthesization choices when the type A is the same as B and op is associative (in
that case, op(op(op(z, a0), a1), a2) === op(z, op(a0, op(a1, a2))), for example.

Below are 6 candidate implementations of scanLeft, assuming an associative op. An implementation is
considered correct if and only if correctly implements the scanLeft specification above, assuming that op
is associative.

Question 19
Is the implementation scanLeft1 correct?

extension [B](l: List[B])

def scanLeft1(z: B)(op: (B, B) ⇒ B): List[B] =

l match
case Nil ⇒ Nil

case h :: t ⇒ t.scanLeft1(op(z, h))(op)

Yes No

Question 20
Is the implementation scanLeft2 correct?

extension [B](l: List[B])

def scanLeft2(z: B)(op: (B, B) ⇒ B): List[B] =

l.par.map(a ⇒ op(z, a)).toList

Yes No

For the following questions, consider the following definitions:

enum ScanTree[B]:

val b: B

case SLeaf(b: B)

case SBranch(b: B, l: ScanTree[B], r: ScanTree[B])

def reduceLeft[A1, A2](z: A1)(

leafOp: A1 ⇒ A2,

seqOp: (A1, B) ⇒ A1,

combOp: (A2, A2) ⇒ A2

): A2 =

def loop(tr: ScanTree[B], acc: A1): A2 =

tr match
case SLeaf(b) ⇒ leafOp(seqOp(acc, b))

case SBranch(_, l, r) ⇒
combOp(loop(l, acc), loop(r, seqOp(acc, l.b)))

loop(this, z)

import ScanTree.*

Solutions
Question 21
Is the implementation scanLeft3 correct?

extension [B](l: List[B])

def scanLeft3(z: B)(op: (B, B) ⇒ B): List[B] =

def mkTree0(l: List[ScanTree[B]]): List[ScanTree[B]] =

l match
case h1 :: h2 :: tl ⇒
SBranch(op(h1.b, h2.b), h1, h2) :: mkTree0(tl)

case _ ⇒ l

def mkTree(l: List[ScanTree[B]]): ScanTree[B] =

l match
case List(tr) ⇒ tr

case _ ⇒ mkTree(mkTree0(l))

def reduce(tr: ScanTree[B], acc: B): List[B] =

tr match
case SLeaf(b) ⇒ List(op(acc, b))

case SBranch(_, l, r) ⇒
reduce(l, acc) ++ reduce(r, op(acc, l.b))

z :: {

if l.isEmpty then List()

else reduce(mkTree(l.map(b ⇒ SLeaf(b))), z)

}

Yes No

Question 22
Is the implementation scanLeft4 correct?

extension [B](l: List[B])

def scanLeft4(z: B)(op: (B, B) ⇒ B): List[B] =

l.foldLeft(z :: Nil)((bs, a) ⇒ op(bs.head, a) :: bs)

.reverse

Yes No

Question 23
Is the implementation scanLeft5 correct?

extension [A](l: List[A])

def scanLeft5[B](z: B)(op: (B, A) ⇒ B): List[B] =

l.par.aggregate(z)(op, (l1, l2) ⇒ l1 ++ l2)

Yes No

Question 24
Is the implementation scanLeft6 correct? For this question, assume that reduce is well defined for non-
associative operations, and applies its operator according to an arbitrary parenthesization of the input.

extension [B](l: List[B])

def scanLeft6(z: B)(op: (B, B) ⇒ B): List[B] =

z :: {

if l.isEmpty then Nil

else
l.par.map(b ⇒ SLeaf(b))

.reduce((l, r) ⇒ SBranch(op(l.b, r.b), l, r))

.reduceLeft(z)(b ⇒ List(b), op, _ ++ _)

}

Yes No

Solutions

Completely balanced trees (15 points)
Question 25 This question is worth 15 points.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Do not write here.

Consider the following definitions:

enum Tree:

case Empty

case Branch(left: Tree, right: Tree)

The size of a binary tree is defined thus:

extension (that: Tree)

def size: Int =

that match
case Empty ⇒ 0

case Branch(left, right) ⇒ 1 + left.size + right.size

For the purpose of this exercise, a tree is locally balanced if it is empty or if it is a Branch and both of its
subtrees are of sizes diverging by at most one. A tree is completely balanced if all of its subtrees are locally
balanced. These properties can be checked using the following function:

extension (that: Tree)

def isLocallyBalanced: Boolean = that match
case Empty ⇒ true
case Branch(left, right) ⇒ math.abs(left.size - right.size) ≤ 1

def isCompletelyBalanced: Boolean =

that match
case Empty ⇒ true
case Branch(left, right) ⇒

that.isLocallyBalanced &&

left.isCompletelyBalanced &&

right.isCompletelyBalanced

Your task is to complete a function completelyBalanced that constructs all completely balanced binary
trees of a given size. The function returns a list of trees; the order of trees in that list does not matter.

You should only write in the boxes on the next page.

Solutions

import Tree.*
def completelyBalanced(size: Int): List[Tree] =

if size == 0 then
List(Empty)

else if size % 2 == 1 then
val tr = completelyBalanced(size / 2)

for
t0 ← tr

t1 ← tr

yield Branch(t0, t1)

else
val tr = completelyBalanced(size / 2)

val tr1 = completelyBalanced(size / 2 - 1)

for
t ← tr

t1 ← tr1

t ← List(Branch(t, t1), Branch(t1, t))

yield t

Solutions

Appendix: Scala Standard Library Methods
Here are the prototypes of some Scala classes that you might find useful:

// Time complexity is listed for some methods below in big-O notation.

// n refers to the number of elements in the list.

abstract class List[+A]:

// Adds an element at the beginning of this list. O(1)

def ::[B >: A](elem: B): List[B]

// Get the element at the specified index. O(n)

def apply(n: Int): A

// Tests whether this list contains a given value as an element. O(n)

def contains[A1 >: A](elem: A1): Boolean

// Selects all elements except first n ones.

def drop(n: Int): List[A]

// Drops longest prefix of elements that satisfy a predicate.

def dropWhile(p: A ⇒ Boolean): List[A]

// Selects all elements of this list which satisfy a predicate.

def filter(pred: A ⇒ Boolean): List[A]

// Selects all elements of this list which do not satisfy a predicate.

def filterNot(pred: A ⇒ Boolean): List[A]

// Builds a new list by applying a function to all elements of this list and

// using the elements of the resulting collections

def flatMap[B](f: A ⇒ List[B]): List[B]

// Applies a binary operator to a start value and all elements of this

// sequence, going left to right.

def foldLeft[B](z: B)(op: (B, A) ⇒ B): B

// Applies a binary operator to a start value and all elements of this

// sequence, going right to left.

def foldRight[B](z: B)(op: (A, B) ⇒ B): B

// Tests whether a predicate holds for every element of this collection

def forall(p: A ⇒ Boolean): Boolean

// Selects the first element of this list. O(1)

def head: A

// Computes the multiset intersection between this sequence and another sequence.

// O(n*m), where m is the number of elements in ‘that‘

def intersect[B >: A](that: Seq[B]): List[A]

// Selects the last element. O(n)

def last: A

// Applies the function f to each element in the list.

def map[B](f: A ⇒ B): List[B]

// Returns a new list with elements in reversed order. O(n)

def reverse: List[A]

// The size of this collection. O(n)

def size: Int

// Sorts this sequence according to an Ordering. O(n * log(n))

def sorted[B >: A](implicit ord: Ordering[B]): List[A]

// Selects all elements except the first. O(1)

def tail: List[A]

// Takes longest prefix of elements that satisfy a predicate.

def takeWhile(p: A ⇒ Boolean): List[A]

object List:

// Produces a collection containing the results of some element computation a

// number of times.

def fill[A](n: Int)(elem: ⇒ A): List[A] = ???

Solutions

abstract class ParList[+A] extends List[A]:

// Aggregates the results of applying an operator to subsequent elements.

def aggregate[B](z: ⇒ B)(seqop: (B, A) ⇒ B, combop: (B, B) ⇒ B): B

abstract class Option[+A]:

// Returns this option’s value.

def get: A

// Returns true if this option is an instance of Some, false otherwise.

def isDefined: Boolean

// Returns true if this option is None, false otherwise.

def isEmpty: Boolean

object math:

// Returns the value rounded down to an integer.

def floor(x: Double): Double = ???

// Returns the value of the first argument raised to the power of the second

argument.

def pow(x: Double, y: Double): Double = ???

// Returns the square root of a Double value.

def sqrt(x: Double): Double = ???

abstract class Double:

// Converts this value to an integer

def toInt: Int

