
y +1/1/60+ y

Profs. Viktor Kunčak, Martin Odersky, and
Clément Pit-Claudel
CS-214 Software Construction
01.11.2023 from 16:15 to 17:45
Duration: 90 minutes

1
SCIPER : 1000001 ROOM : SG 1

Annie Easley
Wait for the start of the exam before turning to the next page. This document is printed
double sided, 16 pages. Do not unstaple.

Material This is a closed book exam. Paper documents and electronic devices are
not allowed. Place on your desk your student ID and writing utensils.
Place all other personal items at the front of the room. If you need
additional draft paper, raise your hand and we will provide some.

Time All points are not equal: we do not think that all exercises have the
same difficulty, even if they have the same number of points. Manage
your time accordingly. You may want to look at the whole exam before
starting on a particular exercise.

Appendix The last page of this exam contains an appendix which is useful for
formulating your solutions. Do not detach this sheet.

Use a pen For technical reasons, only use black or blue pens for the MCQ
part, no pencils! Use white corrector if necessary.

Grading Scheme The exam contains a total of 100 points. For multiple choice questions,
a good answer is worth 4 points and a bad answer 0 points. Note that
there is always exactly one good answer to each question. For true-false
questions, a good answer is worth 2 points and a bad answer 0 points.
For open questions, the number of points is variable and indicated at
the top of each question.

Stay Functional Do not use vars, while loops, for...do loops, etc. This will result
in 0 points for that question.

y y



y +1/2/59+ y
Deduplication (11 pts)
Question 1 This question is worth 11 points.

0 1 2 3 4 5 6 7 8 9 10 11 Do not write here.

Write a function distinctLast[T](xs: List[T]): List[T] that takes a list of elements and re-
turns a new list containing all the elements of the original list, but without duplicates. The function should
preserve the order of elements: an element a can occur before b in its output only if this was also the case
in its input.

If there are duplicate elements in the original list, only the last occurrence of each duplicate should be kept
in the output list.

You can not use the distinct method from the Scala standard library.

Here are example tests that your implementation must pass:

test("distinctLast: empty list"):

assertEquals(distinctLast(Nil), Nil)

test("distinctLast: list without duplicates"):

assertEquals(distinctLast(List(1, 2)), List(1, 2))

test("distinctLast: list with duplicates"):

assertEquals(distinctLast(List(1, 2, 1, 3)), List(2, 1, 3))

The runtime complexity of your implementation should not be more than quadratic (O(n2)).

def distinctLast[T](xs: List[T]) =

y y



y +1/3/58+ y

y y



y +1/4/57+ y
Mystery function (10 pts)
Question 2 This question is worth 10 points.

0 1 2 3 4 5 6 7 8 9 10 Do not write here.

In this exercise, your task is to use the substitution method to write the step-by-step evaluation of an
expression, under the call-by-value evaluation strategy.

You must apply the definition of a single function call at a time and write the result of each step. You can
directly reduce if-then-else expressions to their branches.

As an example, consider the function factorial:

def factorial(n: Int): Int =

if n == 0 then 1

else n * factorial(n - 1)

The expression factorial(2) evaluates step-by-step as follows:

factorial(2)

=== 2 * factorial(1)

=== 2 * (1 * factorial(0))

=== 2 * (1 * 1)

=== 2 * 1

=== 2

Now, consider the function f:

def f(a: Int, b: Int): Int =

if b == 0 then 0

else a + f(b - 1, a)

Write the step-by-step evaluation of the expression f(2, 2):

What does f do, in one word?

y y



y +1/5/56+ y
Line trees (14 pts)
We define a line tree as a binary tree where each node has either 0 or 1 children, but never 2.

Here are two line trees (1) and (2) and two non-line trees (3) and (4):

(1) (2) (3) (4)

In this exercise, we use the following case class to represent binary trees:

case class MyTree(left: Option[MyTree], right: Option[MyTree])

For example, the tree (4) above can be represented as:

val tree4 = MyTree(

Some(MyTree(

Some(MyTree(None, None)),

Some(MyTree(None, None))

)),

Some(MyTree(None, None))

)

Given below are 7 different implementations of the isLine function. A correct implementation must return
true if the given tree is a line tree, or false otherwise. For each implementation, tick Yes if it is correct
(for all possible inputs), or No if it is incorrect.

def isLine1(tree: MyTree): Boolean =

if tree.left.isEmpty then
if tree.right.isEmpty then true
else isLine1(tree.right.get)

else if tree.right.isEmpty then isLine1(tree.left.get)

else false

Question 3 Is isLine1 correct?
Yes No

def isLine2(tree: MyTree): Boolean =

(tree.left.isEmpty && tree.right.isEmpty)

|| (tree.left.isEmpty && isLine2(tree.right.get))

|| (tree.right.isEmpty && isLine2(tree.left.get))

Question 4 Is isLine2 correct?
Yes No

y y



y +1/6/55+ y
def isLine3(tree: MyTree): Boolean =

(tree.left.isEmpty && isLine3(tree.right.get))

|| (tree.right.isEmpty && isLine3(tree.left.get))

|| (tree.left.isEmpty && tree.right.isEmpty)

Question 5 Is isLine3 correct?
Yes No

def isLine4(tree: MyTree): Boolean =

if tree.left.isEmpty then (tree.right.isEmpty || isLine4(tree.right.get))

else if tree.right.isEmpty then isLine4(tree.left.get)

else false

Question 6 Is isLine4 correct?
Yes No

def isLine5(tree: MyTree): Boolean =

(tree.left.isEmpty && (tree.right.isEmpty || isLine5(tree.right.get)))

|| (tree.right.isEmpty && (tree.left.isEmpty || isLine5(tree.left.get)))

Question 7 Is isLine5 correct?
Yes No

def isLine6(tree: MyTree): Boolean =

tree match
case MyTree(None, None) ⇒ true
case MyTree(Some(left), _) ⇒ isLine6(left)

case MyTree(_, Some(right)) ⇒ isLine6(right)

Question 8 Is isLine6 correct?
Yes No

def isLine7(tree: MyTree): Boolean =

tree match
case MyTree(Some(left), Some(right)) ⇒ false
case MyTree(Some(left), _) ⇒ isLine7(left)

case MyTree(_, Some(right)) ⇒ isLine7(right)

case _ ⇒ true

Question 9 Is isLine7 correct?
Yes No

y y



y +1/7/54+ y

y y



y +1/8/53+ y
Proof of MapSingleFlatten (12 pts)
Question 10 This question, consisting of both cases of the proof, is worth 12 points.

0 1 2 3 4 5 6 7 8 9 10 11 12 Do not write here.

All lemmas on this page hold for all types T and all x: T, xs: List[T], ys: List[T], l: List[T],
xss: List[List[T]] and f: T ⇒ List[T].

Given the following lemmas:

(MapNil) Nil.map(f) === Nil

(MapCons) (x::xs).map(f) === f(x) :: xs.map(f)

(FlattenNil) Nil.flatten === Nil

(FlattenCons) (xs::xss).flatten === xs ++ xss.flatten

(ConcatNil) Nil ++ xs === xs

(ConcatCons) (x::xs) ++ ys === x::(xs ++ ys)

(Single) single(x) === x::Nil

You need to prove:

(MapSingleFlatten) l.map(single).flatten === l

Complete the proof below. For each step, you must write the name of the lemma you are using. You may
only use the lemmas above.

The proof is done by induction on l.

Base case: l is Nil. Therefore, you need to prove:

Nil.map(single).flatten === Nil

y y



y +1/9/52+ y
Induction step: l is x :: xs. Therefore, you need to prove:

(x::xs).map(single).flatten === x::xs

given that the induction hypothesis, named IH, holds:

(IH) xs.map(single).flatten === xs

y y



y +1/10/51+ y
for Comprehension (8 pts)
Question 11 This question is worth 8 points.

0 1 2 3 4 5 6 7 8 Do not write here.

A Pythagorean triple consists of three positive integers (a, b, c) where a2 + b2 = c2. For example, (3, 4, 5) is
a Pythagorean triple because 32 + 42 = 9 + 16 = 25 = 52.

Implement the following function that takes an integer n < 104 as a parameter and that produces a list of
all Pythagorean triples (a, b, c) such that 0 < a ≤ b ≤ c ≤ n, in at most O(n3) time.

The order of the triples in the list does not matter. In other words, if (a1, b1, c1) and (a2, b2, c2) are both
valid triples, then it does not matter which one appears earlier in the list.

You must use a for comprehension in order to get any points for this question. Your solution
must take at most O(n3) time in order to get any points for this question.

You do not have to consider the possibility of integer overflow.

def pythagoreanTriples(n: Int): List[(Int, Int, Int)] =

y y



y +1/11/50+ y
Subtyping (14 pts)
Consider the following typing relationships for Cat, Animal, Organism and Dog:

• Cat <: Animal

• Animal <: Organism

• Dog <: Animal

Recall that for any two types T1 and T2, T1 <: T2 means T1 is a subtype of T2.

Question 12 Is it the case that Dog <: Organism ?
Yes No

Question 13 Is it the case that (Cat ⇒ Organism) <: (Animal ⇒ Dog) ?
Yes No

Question 14 Is it the case that ((Organism ⇒ Dog) ⇒ Dog) <: ((Dog ⇒ Organism) ⇒ Cat) ?
Yes No

Question 15 Is it the case that
(Animal ⇒ ((Animal ⇒ Dog) ⇒ Cat)) <: (Cat ⇒ ((Organism ⇒ Dog) ⇒ Organism)) ?

Yes No

Consider also the following classes:

• class List[+T]

• class Sink[-T]

• class Array[T]

Recall that + means covariance, - means contravariance and no annotation means invariance (i.e., neither
covariance nor contravariance).

Question 16 Is it the case that List[Organism] <: List[Dog] ?
Yes No

Question 17 Is it the case that Sink[Sink[Organism] ⇒ Organism] <: Sink[Sink[Dog] ⇒ Dog] ?
Yes No

Question 18 Is it the case that
Sink[List[Array[Organism] ⇒ Organism]] <: Sink[List[Array[Dog] ⇒ Dog]] ?

Yes No

y y



y +1/12/49+ y
Fold and Parallelism (16 pts)
In this exercise, we will take a look at parallel collections and operations over them. Your task is to reason
about the correctness and safety of parallelized operations.

Fold and Permutations
The sequential operation foldRight on a List processes elements in a fixed order from right to left starting
with a known element. However, sometimes, we expect our list elements to arrive in parallel, so we may
know nothing about their order! Is it possible that our folding operation produces the same result regardless
of the order?

As a concrete representation, consider the operation isSameFold:

val l1: List[Int]

val l2: List[Int]

val f: (Int, String) ⇒ String

val z: String

val isPermutation = l1.sorted == l2.sorted

val isSameFold = l1.foldRight(z)(f) == l2.foldRight(z)(f)

where l1 and l2 are permutations of each other, i.e., isPermutation is true.

You can find the signature of List.foldRight in the appendix for your reference.

Question 19 Which one of the following conditions on the operation is well-formed and sufficient to say
that isSameFold necessarily holds, assuming that isPermutation holds?

∀a. f(a, z) = a

∀a b c. f(f(a, b), c) = f(f(a, c), b)

∀a b c. f(a, f(b, c)) = f(f(a, b), c)

∀a b c. f(a, f(b, c)) = f(b, f(a, c))

None, always holds
∀a b. f(a, b) = f(b, a)

Prime Time
We say a natural number n is prime if and only if its only divisors are 1 and itself. Consider the task of
listing all prime numbers less than or equal to a given natural number N . One way to do this is called the
Sieve of Eratosthenes, which dates back to ancient Greece. The algorithm begins by listing all numbers from
2 up to N . Then, choosing the first number, 2, as a pivot, cross out every multiple of it other than itself, as
those are divisible by 2, and thus not prime. As a running example, take N = 17:

2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

2 3 ��4 5

��6 7 ��8 9

��10 11 ��12 13

��14 15 ��16 17

pivot = 2

Then, with this filtered grid, choose the next remaining uncrossed number after 2, which is 3, and cross out
its multiples as well. One can proceed to do this for all remaining numbers recursively, but it suffices to stop
at

√
N , as any composite number up to N has a factor not greater than

√
N .

y y



y +1/13/48+ y
2 3 ��4 5

��6 7 ��8 9

��10 11 ��12 13

��14 15 ��16 17

2 3 ��4 5

��6 7 ��8 ��9

��10 11 ��12 13

��14 ��15 ��16 17

pivot = 3

The remaining numbers are all the prime numbers up to N (= 17):

2 3 5 7 11 13 17

Based on this description of the Sieve of Eratosthenes, we can write a few possible implementations to
compute primes up to a given limit. Opportunities for parallelization are plenty! But do they lead to correct
behaviour?

An implementation is considered correct if and only if for every integer input upto, such that 2 ≤ upto

≤ 106, it produces a list of exactly the prime numbers between 2 and upto, inclusive on both ends. The
order of elements in the output does not matter.

Question 20
Is the implementation primes1 correct?

def primes1(upto: Int): List[Int] =

val base = (2 to upto).toList

val limit = math.floor(math.sqrt(upto)).toInt

val primes =

(2 to limit).foldLeft(base)((agg, num) ⇒
agg.filter(p ⇒ p ≤ num || p % num != 0)

)

primes

Yes No

Question 21
Is the implementation primes2 correct?

def primes2(upto: Int): List[Int] =

val base = (2 to upto).toList

val limit = math.floor(math.sqrt(upto)).toInt

val primes =

(2 to limit).foldLeft(base.par)((agg, num) ⇒
agg.filter(p ⇒ p ≤ num || p % num != 0)

)

primes.toList // convert parallel collection back to List

Yes No

y y



y +1/14/47+ y
Question 22
Is the implementation primes3 correct?

def primes3(upto: Int): List[Int] =

val base = (2 to upto).toList

val limit = math.floor(math.sqrt(upto)).toInt

val primes = (2 to limit).par

.aggregate(base)(

(agg, num) ⇒ agg.filter(p ⇒ p ≤ num || p % num != 0),

(agg1, agg2) ⇒ agg1.intersect(agg2)

)

primes

Yes No

Question 23
Is the implementation primes4 correct?

def primes4(upto: Int): List[Int] =

val base = (2 to upto).toList

val limit = math.floor(math.sqrt(upto)).toInt

val primes = base.foldLeft(List[Int]())((agg, num) ⇒
if agg.forall(num % _ != 0) then num :: agg else agg

)

primes

Yes No

Question 24
Is the implementation primes5 correct?

def primes5(upto: Int): List[Int] =

val base = (2 to upto).toList

val limit = math.floor(math.sqrt(upto)).toInt

val primes = base.par

.foldLeft(List[Int]())((agg, num) ⇒
if agg.forall(num % _ != 0) then num :: agg else agg

)

primes

Yes No

Question 25
Is the implementation primes6 correct?

def primes6(upto: Int): List[Int] =

val base = (2 to upto).toList

val limit = math.floor(math.sqrt(upto)).toInt

val primes = base.par

.aggregate(List[Int]())(

(agg, num) ⇒ if agg.forall(num % _ != 0) then num :: agg else agg,

(agg1, agg2) ⇒ agg1 ++ agg2

)

primes

Yes No

y y



y +1/15/46+ y
Prefix to Postfix (15 points)
Question 26 This question is worth 15 points.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Do not write here.

Your task is to complete the function prefixToPostfix that converts an expression from prefix notation
(also known as Polish notation) to postfix notation (also known as reverse Polish notation).

The expressions are represented as lists of Atoms, where an Atom can either be a number (Num) or an
operator (Add or Sub):

enum Atom:

case Num(value: Int)

case Add

case Sub

import Atom.*

prefixToPostfix should return a pair consisting of two lists of Atoms:

• The first list is the actual result of the conversion; an expression in postfix form.

• The second list contains any remaining unprocessed elements from input

Here are example tests that your implementation must pass successfully:

test("+ 1 2 becomes 1 2 +"):

val res = prefixToPostfix(List(Add, Num(1), Num(2)))

assertEquals(res, (List(Num(1), Num(2), Add), Nil))

test("+ - 3 2 1 becomes 3 2 - 1 +"):

val res = prefixToPostfix(List(Add, Sub, Num(3), Num(2), Num(1)))

assertEquals(res, (List(Num(3), Num(2), Sub, Num(1), Add), Nil))

test("incomplete expression: 1 0 returns 1, and 0"):

val res = prefixToPostfix(List(Num(1), Num(0)))

assertEquals(res, (Num(1) :: Nil, Num(0) :: Nil))

You should only write in the boxes below, and you cannot declare new vals or defs.

def prefixToPostfix(input: List[Atom]): (List[Atom], List[Atom]) =

input match

case Nil ⇒

case Num(value) :: xs ⇒

case op :: xs ⇒

val (output1, xs1) =

val (output2, xs2) =

y y



y +1/16/45+ y
Appendix: Scala Standard Library Methods
Here are the prototypes of some Scala classes that you might find useful:

// Time complexity is listed for some methods below in big-O notation.

// n refers to the number of elements in the list.

abstract class List[+A]:

// Adds an element at the beginning of this list. O(1)

def ::[B >: A](elem: B): List[B]

// Get the element at the specified index. O(n)

def apply(n: Int): A

// Tests whether this list contains a given value as an element. O(n)

def contains[A1 >: A](elem: A1): Boolean

// Selects all elements except first n ones.

def drop(n: Int): List[A]

// Drops longest prefix of elements that satisfy a predicate.

def dropWhile(p: A ⇒ Boolean): List[A]

// Selects all elements of this list which satisfy a predicate.

def filter(pred: A ⇒ Boolean): List[A]

// Selects all elements of this list which do not satisfy a predicate.

def filterNot(pred: A ⇒ Boolean): List[A]

// Builds a new list by applying a function to all elements of this list and

// using the elements of the resulting collections

def flatMap[B](f: A ⇒ List[B]): List[B]

// Applies a binary operator to a start value and all elements of this

// sequence, going left to right.

def foldLeft[B](z: B)(op: (B, A) ⇒ B): B

// Applies a binary operator to a start value and all elements of this

// sequence, going right to left.

def foldRight[B](z: B)(op: (A, B) ⇒ B): B

// Tests whether a predicate holds for every element of this collection

def forall(p: A ⇒ Boolean): Boolean

// Selects the first element of this list. O(1)

def head: A

// Computes the multiset intersection between this sequence and another sequence.

// O(n*m), where m is the number of elements in ‘that‘

def intersect[B >: A](that: Seq[B]): List[A]

// Selects the last element. O(n)

def last: A

// Applies the function f to each element in the list.

def map[B](f: A ⇒ B): List[B]

// Returns a new list with elements in reversed order. O(n)

def reverse: List[A]

// The size of this collection. O(n)

def size: Int

// Sorts this sequence according to an Ordering. O(n * log(n))

def sorted[B >: A](implicit ord: Ordering[B]): List[A]

// Selects all elements except the first. O(1)

def tail: List[A]

// Takes longest prefix of elements that satisfy a predicate.

def takeWhile(p: A ⇒ Boolean): List[A]

object List:

// Produces a collection containing the results of some element computation a

// number of times.

def fill[A](n: Int)(elem: ⇒ A): List[A] = ???

y y



y +1/17/44+ y
abstract class ParList[+A] extends List[A]:

// Aggregates the results of applying an operator to subsequent elements.

def aggregate[B](z: ⇒ B)(seqop: (B, A) ⇒ B, combop: (B, B) ⇒ B): B

abstract class Option[+A]:

// Returns this option’s value.

def get: A

// Returns true if this option is an instance of Some, false otherwise.

def isDefined: Boolean

// Returns true if this option is None, false otherwise.

def isEmpty: Boolean

object math:

// Returns the value rounded down to an integer.

def floor(x: Double): Double = ???

// Returns the value of the first argument raised to the power of the second

argument.

def pow(x: Double, y: Double): Double = ???

// Returns the square root of a Double value.

def sqrt(x: Double): Double = ???

abstract class Double:

// Converts this value to an integer

def toInt: Int

y y


